Evolution of Spatial and Temporal cis-Regulatory Divergence in Sticklebacks.

Molecular biology and evolution(2023)

引用 2|浏览8
暂无评分
摘要
Cis-regulatory changes are thought to play a major role in adaptation. Threespine sticklebacks have repeatedly colonized freshwater habitats in the Northern Hemisphere, where they have evolved a suite of phenotypes that distinguish them from marine populations, including changes in physiology, behavior, and morphology. To understand the role of gene regulatory evolution in adaptive divergence, here we investigate cis-regulatory changes in gene expression between marine and freshwater ecotypes through allele-specific expression (ASE) in F1 hybrids. Surveying seven ecologically relevant tissues, including three sampled across two developmental stages, we identified cis-regulatory divergence affecting a third of genes, nearly half of which were tissue-specific. Next, we compared allele-specific expression in dental tissues at two timepoints to characterize cis-regulatory changes during development between marine and freshwater fish. Applying a genome-wide test for selection on cis-regulatory changes, we find evidence for lineage-specific selection on several processes between ecotypes, including the Wnt signaling pathway in dental tissues. Finally, we show that genes with ASE, particularly those that are tissue-specific, are strongly enriched in genomic regions of repeated marine-freshwater divergence, supporting an important role for these cis-regulatory differences in parallel adaptive evolution of sticklebacks to freshwater habitats. Altogether, our results provide insight into the cis-regulatory landscape of divergence between stickleback ecotypes across tissues and during development, and support a fundamental role for tissue-specific cis-regulatory changes in rapid adaptation to new environments.
更多
查看译文
关键词
cis-regulatory evolution,adaptation,gene expression,sticklebacks
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要