Hierarchical Molecular Graph Self-Supervised Learning for property prediction

Communications chemistry(2023)

引用 8|浏览42
暂无评分
摘要
Molecular graph representation learning has shown considerable strength in molecular analysis and drug discovery. Due to the difficulty of obtaining molecular property labels, pre-training models based on self-supervised learning has become increasingly popular in molecular representation learning. Notably, Graph Neural Networks (GNN) are employed as the backbones to encode implicit representations of molecules in most existing works. However, vanilla GNN encoders ignore chemical structural information and functions implied in molecular motifs, and obtaining the graph-level representation via the READOUT function hinders the interaction of graph and node representations. In this paper, we propose Hierarchical Molecular Graph Self-supervised Learning (HiMol), which introduces a pre-training framework to learn molecule representation for property prediction. First, we present a Hierarchical Molecular Graph Neural Network (HMGNN), which encodes motif structure and extracts node-motif-graph hierarchical molecular representations. Then, we introduce Multi-level Self-supervised Pre-training (MSP), in which corresponding multi-level generative and predictive tasks are designed as self-supervised signals of HiMol model. Finally, superior molecular property prediction results on both classification and regression tasks demonstrate the effectiveness of HiMol. Moreover, the visualization performance in the downstream dataset shows that the molecule representations learned by HiMol can capture chemical semantic information and properties.
更多
查看译文
关键词
molecular,graph,prediction,learning,self-supervised
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要