An affinity-directed phosphatase, AdPhosphatase, system for targeted protein dephosphorylation.

Cell chemical biology(2023)

引用 3|浏览13
暂无评分
摘要
Reversible protein phosphorylation, catalyzed by protein kinases and phosphatases, is a fundamental process that controls protein function and intracellular signaling. Failure of phospho-control accounts for many human diseases. While a kinase phosphorylates multiple substrates, a substrate is often phosphorylated by multiple kinases. This renders phospho-control at the substrate level challenging, as it requires inhibition of multiple kinases, which would thus affect other kinase substrates. Here, we describe the development and application of the affinity-directed phosphatase (AdPhosphatase) system for targeted dephosphorylation of specific phospho-substrates. By deploying the Protein Phosphatase 1 or 2A catalytic subunits conjugated to an antigen-stabilized anti-GFP nanobody, we can promote the dephosphorylation of two independent phospho-proteins, FAM83D or ULK1, knocked in with GFP-tags using CRISPR-Cas9, with exquisite specificity. By redirecting protein phosphatases to neo-substrates through nanobody-mediated proximity, AdPhosphatase can alter the phospho-status and function of target proteins and thus, offers a new modality for potential drug discovery approaches.
更多
查看译文
关键词
AdPhosphatase,FAM83D,PPP1CA,PPP2CA,ULK1,affinity-directed phosphatase,nanobody,targeted dephosphorylation
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要