Modeling the formation of Selk impact crater on Titan: Implications for Dragonfly

arxiv(2023)

引用 0|浏览30
暂无评分
摘要
Selk crater is an $\sim$ 80 km diameter impact crater on the Saturnian icy satellite, Titan. Melt pools associated with impact craters like Selk provide environments where liquid water and organics can mix and produce biomolecules like amino acids. It is partly for this reason that the Selk region has been selected as the area that NASA's Dragonfly mission will explore and address one of its primary goals: to search for biological signatures on Titan. Here we simulate Selk-sized impact craters on Titan to better understand the formation of Selk and its melt pool. We consider several structures for the icy target material by changing the thickness of the methane clathrate layer, which has a substantial effect on the target thermal structure and crater formation. Our numerical results show that a 4 km-diameter-impactor produces a Selk-sized crater when 5-15 km thick methane clathrate layers are considered. We confirm the production of melt pools in these cases and find that the melt volumes are similar regardless of methane clathrate layer thickness. The distribution of the melted material, however, is sensitive to the thickness of the methane clathrate layer. The melt pool appears as a torus-like shape with a few km depth in the case of 10-15 km thick methane clathrate layer, and as a shallower layer in the case of a 5 km thick clathrate layer. Melt pools of this thickness may take tens of thousands of years to freeze, allowing more time for complex organics to form.
更多
查看译文
关键词
Titan,Saturnian satellites,Planetary surfaces,Impact phenomena,Methane
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要