Seamless Replacement of UAV-BSs Providing Connectivity to the IoT.

GLOBECOM(2022)

引用 2|浏览3
暂无评分
摘要
This paper considers the scenario of Unmanned Aerial Vehicles (UAVs) acting as flying base stations (UAV-BSs) to provide network connectivity to ground Internet of Things (IoT) devices. More precisely, we investigate the issue where a UAV-BS needs to be replaced by a new one in a seamless way. First, we formulate the issue as an optimization problem aiming to maximize the minimum transmission rate of the served IoT devices during the UAV-BS replacement process. This is translated into jointly optimizing the trajectory of the source UAV-BS (the one to be replaced) and the target UAV-BS (the replacing one), while pushing the IoT devices to seamlessly transfer their connections to the target UAV-BS. We therefore consider a target replacement zone where the UAV-BS replacement can happen, along with IoT connections transfer. Furthermore, we propose a solution based on Deep Reinforcement Learning (DRL). More precisely, we introduce a Multi-Heterogeneous Agent-based approach (MHADRL), where two types of agents are considered, namely the UAV-BS agents and the IoT agents. Each agent implements a DQN (Deep Q-Learning) algorithm, where UAV-BS agents learn optimal policies to perform replacement while IoT agents learn optimal policies to transfer their connections to the target UAV-BS. The conducted performance evaluations show that the proposed approach can achieve near optimal optimization.
更多
查看译文
关键词
iot,connectivity,uav-bss
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要