Molecular-Dynamics Analysis of the Mechanical Behavior of Plasma-Facing Tungsten.

ACS applied materials & interfaces(2023)

引用 1|浏览13
暂无评分
摘要
We report a systematic computational analysis of the mechanical behavior of plasma-facing component (PFC) tungsten focusing on the impact of void and helium (He) bubble defects on the mechanical response beyond the elastic regime. Specifically, we explore the effects of porosity and He atomic fraction on the mechanical properties and structural response of PFC tungsten, at varying temperature and bubble size. We find that the Young modulus of defective tungsten undergoes substantial softening that follows an exponential scaling relation as a function of matrix porosity and He atomic content. Beyond the elastic regime, our high strain rate simulations reveal that the presence of nanoscale spherical defects (empty voids and He bubbles) reduces the yield strength of tungsten in a monotonically decreasing fashion, obeying an exponential scaling relation as a function of tungsten matrix porosity and He concentration. Our detailed analysis of the structural response of PFC tungsten near the yield point reveals that yielding is initiated by emission of dislocation loops from bubble/matrix interfaces, mainly /⟨111⟩ shear loops, followed by gliding and growth of these loops and reactions to form ⟨100⟩ dislocations. Furthermore, dislocation gliding on the ⟨111⟩{211} twin systems nucleates /⟨111⟩ twin regions in the tungsten matrix. These dynamical processes reduce the stress in the matrix substantially. Subsequent dislocation interactions and depletion of the twin phases via nucleation and propagation of detwinning partials lead the tungsten matrix to a next deformation stage characterized by stress increase during applied straining. Our structural analysis reveals that the depletion of twin boundaries (areal defects) is strongly impacted by the density of He bubbles at higher porosities. After the initial stress relief upon yielding, increase in the dislocation density in conjunction with decrease in the areal defect density facilitates the initiation of dislocation-driven deformation mechanisms in the PFC crystal.
更多
查看译文
关键词
helium implantation,mechanical behavior,molecular-dynamics simulation,plasma-exposed tungsten,plasma-facing materials
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要