Testing of Diamond Electrodes as Biosensor for Antibody-Based Detection of Immunoglobulin Protein with Electrochemical Impedance Spectroscopy

C-JOURNAL OF CARBON RESEARCH(2022)

引用 0|浏览3
暂无评分
摘要
To control the increasing virus pandemics, virus detection methods are essential. Today's standard virus detections methods are fast (immune assays) or precise (PCR). A method that is both fast and precise would enable more efficient mitigation measures and better life comfort. According to recent papers, electrochemical impedance spectroscopy (EIS) has proven to detect viruses fast and precise. Boron-doped diamond (BDD) was used as a high-performance electrode material in these works. The aim of this work was to perform an initial test of BDD-based EIS for biosensing. As an easily available standard biomaterial, human immunoglobulin G (IgG) was used as analyte. Niobium plates were coated via hot-filament activated chemical vapor deposition with polycrystalline diamond, and doped with boron for electrical conductivity. An anti-human IgG antibody was immobilised on the BDD electrodes as a biosensing component. Four different analyte concentrations up to 1.1 mu g per litre were tested. During EIS measurements, both impedance over frequency curves and Nyquist plot demonstrated no clear sign of a change of the charge transfer resistance. Thus, no positive statement about a successful biosensing could be made so far. It is assumed that these issues need to be investigated and improved, including the relation of BDD electrode size to electrolyte volume, termination of the BDD electrodes (H, O) for a successful functionalisation and EIS frequency range. The work will be continued concerning these improvement issues in order to finally use virus materials as analyte.
更多
查看译文
关键词
biosensing,boron-doped diamond,electrochemical impedance spectroscopy,Fc-Cys engineered antibody,surface immobilisation,atmospheric pressure plasma,1,4-conjugate thiol addition,amino group,fluorescence analysis
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要