High-precision intermode beating electro-optic distance measurement for mitigation of atmospheric delays

JOURNAL OF APPLIED GEODESY(2023)

引用 3|浏览2
暂无评分
摘要
High-precision electro-optic distance measurement (EDM) is essential for deformation monitoring. Although sub-ppm instrumental accuracy is already feasible with state-of-the-art commercial technology, the practically attainable accuracy on distances over more than a few hundred meters is limited by uncertainties in estimating the integral refractive index along the propagation path, which often results in measurement errors of several ppm. This paper presents a new instrumental basis for high-accuracy multispectral EDM using an optical supercontinuum to enable dispersion-based inline refractivity compensation. Initial experiments performed on two spectrally filtered bands of 590 and 890 nm from the supercontinuum show measurement precision better than 0.05 mm over 50 m for an acquisition time of around 3 ms on the individual bands. This represents a comparable performance to our previously reported results on 5 cm by over a range of 3 orders of magnitude longer, which can still be improved by increasing the acquisition time. The preliminary results indicate a relative accuracy of about 0.1 mm at 50 m on each wavelength. Improvement is possible by calibration and by implementing a self-reference scheme that mitigates slow drifts caused by power-to-phase coupling. The results reported herein thus indicate that the presented approach can be further developed for achieving sub-ppm accuracy of refractivity compensated distance measurements on practically useful ranges and under outdoor conditions.
更多
查看译文
关键词
frequency combs,multiwavelength EDM,optical metrology,refractivity compensation,supercontinuum
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要