Air pollution exposure and heart failure: A systematic review and meta-analysis.

The Science of the total environment(2023)

引用 2|浏览18
暂无评分
摘要
While the literature strongly supports a positive association between particulate matter with diameter ≤ 2.5 μm (PM2.5) exposure and heart failure (HF), there is uncertainty regarding the other pollutants and the dose and duration of exposure that triggers an adverse response. To comprehensively assess and quantify the association of air pollution exposure with HF incidence and mortality, we performed separate meta-analyses according to pollutant types [PM2.5, PM10, sulfur dioxide (SO2), nitrogen dioxide (NO2), carbon monoxide (CO), ozone (O3)], and exposure duration (short- and long-term). We systematically searched PubMed, EMBASE, and Web of Science for relevant articles with publication dates up to July 12, 2022, identifying 35 eligible studies. Random-effects models were used to summarize the pooled odds ratios (ORs) and 95 % confidence intervals (95 % CIs). For long-term exposure, the growing risk of HF was significantly associated with each 10 μg/m3 increase in PM2.5 (OR = 1.196, 95 % CI: 1.079-1.326; I2 = 76.8 %), PM10 (1.190, 1.045-1.356; I2 = 76.2 %), and NO2 (1.072, 1.028-1.118; I2 = 78.3 %). For short-term exposure, PM2.5, PM10, NO2, and O3 (per 10 μg/m3 increment) increased the risk of HF, with estimated ORs of 1.019 (1.008-1.030; I2 = 39.9 %), 1.012 (1.007-1.017; I2 = 28.3 %), 1.016 (1.005-1.026; I2 = 53.7 %), and 1.006 (1.002-1.010; I2 = 0.0 %), respectively. No significant effects of SO2 and CO exposure on the risk of HF were observed. In summary, our study powerfully highlights the deleterious impact of PM2.5, PM10, and NO2 exposure (either short- or long-term) on HF risk. Serious efforts should be made to improve air quality through legislation and interdisciplinary cooperation.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要