Novel metal-lignin assembly strategy for one-pot fabrication of lignin-derived heteroatom-doped hierarchically porous carbon and its application in high-performance supercapacitor.

International journal of biological macromolecules(2023)

引用 13|浏览4
暂无评分
摘要
The conversion of renewable lignin with low-cost and high carbon content properties into porous carbon materials for supercapacitor applications has caught considerable interest. Herein, two dimensional lignin-derived carbon nanosheets (N-LHPC) with hierarchically porous structures were facilely synthesized via a novel metal-lignin assembly strategy and their performances for supercapacitor applications were investigated. During the carbonization process, the uniformly distributed Zn facilitates the coordinating development of micropores structure and the generated MgO embedded in the carbon matrix acts as a template to produce mesoporous structure after acid washing. Moreover, the melamine addition promotes the development of mesopores by formation of lamellae structure and realizes the N doping in the carbon materials. Therefore, the obtained N-LHPC presents an excellent specific capacitance of 235.75 F/g at 0.5 A/g owing to its hierarchical pore structure as well as the N/O functional groups. Moreover, at the power density of 450 W/kg, the N-LHPC achieves a maximum energy density of 14.75 Wh/kg, showing great application potential in energy storage. The metal-lignin assembly strategy followed by N-doping proposed in this paper provides N-LHPC materials with hierarchical nanostructure, good electron/ion transfer properties, and abundant pseudocapacitive active species, which improve the capacitance performances of the N-LHPC.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要