Ruminal Degradation of Taurine and Its Effects on Rumen Fermentation In Vitro

FERMENTATION-BASEL(2023)

引用 1|浏览6
暂无评分
摘要
Taurine accounts for approximately 0.1% of an animal's body. It cannot be used for protein synthesis but plays a wide range of important roles in the animal body. Taurine does not exist in plants, while mammals can only synthesize 30-40% of the taurine they need. Supplementing taurine to beef cattle may be necessary to improve their nutrient utilization and health status. However, no data are available regarding the metabolism of taurine in the rumen. Two in vitro trials were conducted to investigate the ruminal degradability of taurine and its effects on rumen fermentation. In Trial 1, Tilley and Terry's in vitro rumen fermentation technique was used for incubation. As treatments, two levels of taurine, i.e., 0 and 10 mg, were added into plastic tubes containing 0.4000 g of feed mixture with a calibrated volume of 50 mL. Three adult cattle fitted with rumen cannulas were used as the donors for rumen fluid. The incubation was carried out at 39 degrees C for 48 h. The results showed that the taurine degradability increased with incubation time (p < 0.001) while its 2 h-degradability reached 99%. Taurine decreased the 48 h-dry matter degradability (DMD) (p = 0.008) and increased the 24 h- and 48 h-pH (p = 0.005; p = 0.018), respectively. In Trial 2, the Hohenheim gas test was used for incubation. Four levels of taurine, i.e., 0, 5, 10 and 20 mg, were added into glass syringes containing 0.2000 g feed mixture with a calibrated volume of 100 mL as treatments. The rumen fluid donors were the same as in Trial 1. The incubation was carried out at 39 degrees C for 48 h. The results showed that taurine increased the 48 h-pH (p < 0.001) linearly, decreased the cumulative gas production (p < 0.001) and the total volatile fatty acids (VFA) concentration (p = 0.014), and quadratically affected the ammonia-nitrogen (p < 0.001) and microbial crude protein (MCP) concentrations (p < 0.001). It was concluded that taurine was highly degradable in rumen fermentation. Taurine inhibits ruminal fermentation by decreasing DMD, VFA and gas production while improving MCP synthesis on a dose-dependent basis.
更多
查看译文
关键词
degradability,in vitro,rumen,taurine
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要