Paleostress Analysis in the Northern Birjand, East of Iran: Insights from Inversion of Fault-Slip Data

MINERALS(2022)

引用 5|浏览1
暂无评分
摘要
This research assessed stress regimes and fields in eastern Iran using fault-slip data and the tectonic events associated with these changes. Our stress analysis of the brittle structures in the Shekarab Mountains revealed significant changes in stress regimes from the late Cretaceous to the Quaternary. Reconstructing stress fields using the age and sense of fault movements showed that during the late Cretaceous, the direction of the maximum horizontal stress axes (sigma 1) under a compressional stress regime was similar to N290 degrees. This stress regime led to the uplifting of ophiolites and peridotites in eastern Iran. During the Eocene, the sigma 1 direction was NE-SW. The late Eocene and Oligocene stress states showed two distinct transpression and transtension stress regimes. This transition from transpression to transtension in the eastern Shekarab Mountains was the consequence of regional variations in stress regimes. The Quaternary stress state indicates that the tectonic regime in the Quaternary is strike-slip and the sigma 1 direction is similar to N046 degrees, which coincides with the current convergence direction of the Arabia-Eurasia plates. Our paleostress analysis revealed that four distinct stress regimes have been recognized in the area, including compressional, transtensional, transpressional, and strike-slip regimes. Our findings indicated that the diversity of the tectonic regimes was responsible for the formation of a variety of geological structures, including folds with different axes, faults with different mechanisms, and the current configuration of the Sistan suture zone.
更多
查看译文
关键词
stress regime,paleostress,fault,Sistan suture zone,tectonics,structural geology
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要