An Enhanced Water Quality Index for Water Quality Monitoring Using Remote Sensing and Machine Learning

APPLIED SCIENCES-BASEL(2022)

引用 3|浏览5
暂无评分
摘要
Water quality deterioration is a serious problem with the increase in the urbanization rate. However, water quality monitoring uses grab sampling of physico-chemical parameters and a water quality index method to assess water quality. Both processes are lengthy and expensive. These traditional indices are biased towards the physico-chemical parameters because samples are only collected from certain sampling points. These limitations make the current water quality index method unsuitable for any water body in the world. Thus, we develop an enhanced water quality index method based on a semi-supervised machine learning technique to determine water quality. This method follows five steps: (i) parameter selection, (ii) sub-index calculation, (iii) weight assignment, (iv) aggregation of sub-indices and (v) classification. Physico-chemical, air, meteorological and hydrological, topographical parameters are acquired for the stream network of the Rawal watershed. Min-max normalization is used to obtain sub-indices, and weights are assigned with tree-based techniques, i.e., LightGBM, Random Forest, CatBoost, AdaBoost and XGBoost. As a result, the proposed technique removes the uncertainties in the traditional indexing with a 100% classification rate, removing the necessity of including all parameters for classification. Electric conductivity, secchi disk depth, dissolved oxygen, lithology and geology are amongst the high weighting parameters of using LightGBM and CatBoost with 99.1% and 99.3% accuracy, respectively. In fact, seasonal variations are observed for the classified stream network with a shift from 55:45% (January) to 10:90% (December) ratio for the medium to bad class. This verifies the validity of the proposed method that will contribute to water management planning globally.
更多
查看译文
关键词
water quality assessment,physico-chemical parameters,water quality index,air quality,meteorological,remote sensing
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要