Targeted gene inactivation in Salmonella Typhi by CRISPR/Cas9-assisted homologous recombination

WORLD JOURNAL OF MICROBIOLOGY & BIOTECHNOLOGY(2023)

引用 0|浏览9
暂无评分
摘要
Background Targeted gene inactivation (TGI) is a widely used technique for the study of genes' functions. There are many different methods for TGI, however, most of them are so complicated and time-consuming. New promising genetic engineering tools are developing for this purpose. In the present study, for the first time we disrupted a virulence gene from Salmonella enterica serovar Typhi (S. Typhi), located in the bacterial chromosome using CRISPR/Cas9 system and homology directed repair (HDR). Methods For this aim, pCas9 plasmid containing Cas9 enzyme and required proteins for homology directed recombination was transferred to S. Typhi by electroporation. On the other hand, a specific guide RNA (gRNA) was designed using CRISPOR online tool. Synthetic gRNA was cloned into pTargetF plasmid. Also, a DNA fragment (HDR fragment) was designed to incorporate into the bacterial chromosome following the cleavage of the bacterial genome by Cas9 enzyme. pTargetF containing gRNA and HDR fragment were co-transferred to S. Typhi containing pcas9 plasmid. The transformed bacteria were screened for recombination using PCR, restriction digestion and sequencing. Results The results of PCR, restriction digestion and sequencing showed the successful recombination of S. Typhi, in which the gidA gene is disrupted. Conclusion In the present study we aimed to develop a rapid and robust method for targeted gene inactivation in a bacterial species, S. Typhi. This procedure can be exploited for disruption of other Salmonella as well as other bacteria's genes.
更多
查看译文
关键词
Targeted gene inactivation (TGI),CRISPR/Cas system,Salmonella Typhi, gidA gene,Live attenuated vaccines, homologous recombination
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要