Fermi liquids beyond the forward scattering limit: the role of non-forward scatterings for scale invariance and instabilities

arxiv(2023)

引用 0|浏览7
暂无评分
摘要
Landau Fermi liquid theory is a fixed point theory of metals that includes the forward scattering amplitudes as exact marginal couplings. However, the fixed point theory that only includes the strict forward scatterings is non-local in real space. In this paper, we revisit the Fermi liquid theory using the field-theoretic functional renormalization group formalism and show how the scale invariant fixed point emerges as a local theory, which includes not only the forward scatterings but also non-forward scatterings with small but non-zero momentum transfers. In the low-energy limit, the non-forward scattering amplitude takes a scale invariant form. If the bare coupling is attractive beyond a critical strength, the coupling function exhibits a run-away flow drived by non-forward scattering amplitudes, signifying potential instabilities in particle-hole channels. The pairing interaction also obeys a scaling relation if the center of mass momentum of Cooper pairs is comparable with energy. The coupling functions fully capture the universal low-energy dynamics of the collective modes and instabilities of Fermi liquids. The divergence of the cocupling function in the particle-hole channel beyond a critical interaction suggests an instability toward an ordered phase with a momentum that depends on the interaction strength. At the critical interaction, the instability corresponds to the uniform Pomeranchuk or Stoner instability, but the momentum of the leading instability becomes non-zero for stronger attractive interaction. In the particle-particle channel, the coupling function reveals the dynamics of the unstable mode associated with the BCS instability. When an unstable normal metal evolves into the superconducting state, there exists a period in which a superconducting state with spatially non-uniform phase appears due to the presence of unstable Cooperon modes with non-zero momenta.
更多
查看译文
关键词
liquids,scale invariance,non-forward
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要