Human primary plaque cell cultures to study mechanisms of atherosclerosis

biorxiv(2023)

引用 0|浏览43
暂无评分
摘要
Plaque smooth muscle cells are critical players in the initiation and advancement of atherosclerotic disease. They produce extracellular matrix (ECM) components, which play a role in lesion progression and stabilization. Despite clear phenotypic differences between plaque smooth muscle cells and vascular smooth muscle cells (VSMCs), VSMCs are still widely used as a model system in atherosclerotic research. Here we present a conditioned outgrowth method to isolate plaque smooth muscle cells. We obtained plaque cells from 27 donors (24 carotid and 3 femoral endarterectomies). We show that these cells keep their proliferative capacity for eight passages, are transcriptionally stable, retain donor-specific gene expression programs, and express extracellular matrix proteins (FN1, COL1A1, DCN) and smooth muscle cell markers (ACTA2, MYH11, CNN1). Single-cell transcriptomics of plaque tissue and cultured cells reveals that cultured plaque cells closely resemble the myofibroblast fraction of plaque smooth muscle cells. Chromatin immunoprecipitation sequencing (ChIP-seq) shows the presence of histone H3 lysine 4 dimethylation (H3K4me2) at the MYH11 promoter, pointing to their smooth muscle cell origin. Finally, we demonstrated that plaque cells can be efficiently transduced (>97%) and are capable to take up oxidized LDL (oxLDL) and undergo calcification. In conclusion, we present a method to isolate and culture primary human plaque cells that retain plaque myofibroblast-like cells' phenotypical and functional capabilities - making them a suitable in vitro model for studying selected mechanisms of atherosclerosis. ### Competing Interest Statement The authors have declared no competing interest.
更多
查看译文
关键词
atherosclerosis
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要