FedDA: Faster Framework of Local Adaptive Gradient Methods via Restarted Dual Averaging

ICLR 2023(2023)

引用 0|浏览43
暂无评分
摘要
Federated learning (FL) is an emerging learning paradigm to tackle massively distributed data. In Federated Learning, a set of clients jointly perform a machine learning task under the coordination of a server. The FedAvg algorithm is one of the most widely used methods to solve Federated Learning problems. In FedAvg, the learning rate is a constant rather than changing adaptively. The adaptive gradient methods show superior performance over the constant learning rate schedule; however, there is still no general framework to incorporate adaptive gradient methods into the federated setting. In this paper, we propose \textbf{FedDA}, a novel framework for local adaptive gradient methods. The framework adopts a restarted dual averaging technique and is flexible with various gradient estimation methods and adaptive learning rate formulations. In particular, we analyze \textbf{FedDA-MVR}, an instantiation of our framework, and show that it achieves gradient complexity $\tilde{O}(\epsilon^{-1.5})$ and communication complexity $\tilde{O}(\epsilon^{-1})$ for finding a stationary point $\epsilon$. This matches the best known rate for first-order FL algorithms and \textbf{FedDA-MVR} is the first adaptive FL algorithm that achieves this rate. We also perform extensive numerical experiments to verify the efficacy of our method.
更多
查看译文
关键词
local adaptive gradient methods,faster framework,dual
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要