Effect of exogenous taurine on pea (Pisum sativum L.) plants under salinity and iron deficiency stress.

Environmental research(2023)

引用 11|浏览17
暂无评分
摘要
Soil salinity and Fe deficiency affect plant growth and survival by changing nutrient availability and disrupting water balance. Natural and human activities, such as evaporation and deforestation, can intensify these soil conditions. Taurine, a novel growth regulator, holds promise in mediating plant defense responses. Its effects on defense responses are still unclear. Previously, taurine showed potential in improving clover tolerance to alkaline stress and manganese toxicity. Taurine impact on plant growth under Fe deficiency and salinity stress remains uninvestigated. A pot experiment was conducted to evaluate the effects of taurine on pea plant growth, ion uptake, and defense strategies in response to salt stress and Fe deficiency. Iron deficiency was established by substituting 0.1 mM FeSO4 for 0.1 mM Fe-EDTA in the nutrient solution. Salinity stress was induced by incorporating a mixture of NaCl, MgCl2, KCl, Na2SO4, Na2CO3, NaHCO3 and CaCl2 in a 1:1:1:1:1:1:1 ratio to produce a salinity concentration of 100 mM. The simultaneous imposition of salinity and Fe deficiency significantly exacerbated oxidative stress, as evidenced by elevated levels of relative membrane permeability, hydrogen peroxide (H2O2), superoxide radical (O2•-), methylglyoxal (MG), malondialdehyde (MDA), and increased activity of lipoxygenase (LOX). Salinity stress alone and the combination of salinity and Fe deficiency resulted in substantial accumulation of Na+ ions that impeded acquisition of essential nutrients. Taurine (100 and 200 mg L-1) notably improved osmotic adjustment and oxidative defense to diminish water imbalance and oxidative injury in plants under stress. These results suggest that exogenous taurine may serve as a promising means of mitigating the detrimental effects of salt stress and Fe deficiency in plants.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要