Integrated Operational Characteristic Simulations of a ±100 kV/1 kA Superconducting DC Energy Pipeline Based on Multi-Physics Field Interaction

IEEE Transactions on Applied Superconductivity(2023)

引用 1|浏览15
暂无评分
摘要
The DC superconducting energy pipeline (DC SEP) is a promising technology, which has the ability to transmit electricity and fossil energy such as liquefied natural gas (LNG) at the same pipeline so that LNG could serve as the refrigerant for the high-temperature superconducting (HTS) cables. The collaborative transportation of electricity and LNG increases the efficiency while lowering the cost. However, the operation performance of the SEP, which is crucial for HTS cables and LNG, is of greater complexity on account of multi-physics interactions. Herein, a ±100 kV/1 kA SEP model with electric, magnetic, fluid and thermal fields is established in COMSOL Multiphysics to analyze the temperature distribution of SEP via parametric scanning on SEP heat leakage and LNG flow rate. Finally, the relationship between temperature rise and LNG flow rate of a SEP has been estimated based on the interactions of the multi-physics fields. The results indicate that the temperature rises by 11.6 K for every kilometer of SEP. Moreover, the influences of heat leakage and LNG flow on temperature rise are revealed. Temperature rise increases proportionally with heat leakage and it decreases not monotonously with LNG flow rate. This study validates the feasibility of SEP and provides the theoretical references for the demonstration of SEP.
更多
查看译文
关键词
DC superconducting cable,DC superconducting energy pipeline (DC SEP),liquified natural gas (LNG),multi-physics interaction simulation
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要