When does humoral memory enhance infection?

arxiv(2023)

引用 1|浏览14
暂无评分
摘要
Antibodies and humoral memory are key components of the adaptive immune system. We consider and computationally model mechanisms by which humoral memory present at baseline might instead increase infection load; we refer to this effect as EI-HM (enhancement of infection by humoral memory). We first consider antibody dependent enhancement (ADE) in which antibody enhances the growth of the pathogen, typically a virus, and typically at intermediate "Goldilocks" levels of antibody. Our ADE model reproduces ADE in vitro and enhancement of infection in vivo from passive antibody transfer. But notably the simplest implementation of our ADE model never results in EI-HM. Adding complexity, by making the cross-reactive antibody much less neutralizing than the de novo generated antibody or by including a sufficiently strong non-antibody immune response, allows for ADE-mediated EI-HM. We next consider the possibility that cross-reactive memory causes EI-HM by crowding out a possibly superior de novo immune response. We show that, even without ADE, EI-HM can occur when the cross-reactive response is both less potent and "directly" (i.e. independently of infection load) suppressive with regard to the de novo response. In this case adding a non-antibody immune response to our computational model greatly reduces or completely eliminates EI-HM, which suggests that "crowding out" is unlikely to cause substantial EI-HM. Hence, our results provide examples in which simple models give qualitatively opposite results compared to models with plausible complexity. Our results may be helpful in interpreting and reconciling disparate experimental findings, especially from dengue, and for vaccination.
更多
查看译文
关键词
humoral memory enhance infection
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要