Silk fibroin fibers-based shape memory membrane with Janus wettability for multitiered wearable protection

Journal of Materials Research(2023)

引用 2|浏览16
暂无评分
摘要
Realizing breathable shape memory fiber-based material with antibacterial and waterproof performances is important for multitiered wearable protection to address the increasing concerns of air pollution. Herein, using an alternating electrospinning-electrospraying technology, we develop a fiber-based membrane with Janus wettability based on a silk fibroin nanofibers-substrate (SFNFs), a polyurethane nanospheres-top layer (PUNSs), and a middle layer of PU nanofibers-mat with in-situ grown silver nanoparticles (PUNFs-AgNPs), which serves separately for skin contact, a self-cleaning physical barrier to resist external aerosol/bacteria (PM2.5 filtration efficiency ~ 98.1%), and a bio-barrier that can sterilize harmful particles and inhibit bacteria proliferation (> 95%). This breathable Janus film (SFNFs/PUNFs-AgNPs/PUNSs, SPAP) with an antibacterial filter shows shape memory stretchability enabled by the thermoplastic PU component, which is mechanically adaptive to human body for wearable protection. This work presents a breathable wearable material for air-filtration and anti-bacteria, promising for applications such as wound dressings, medical masks, protection suits, and multifunctional filters. Graphical abstract An alternating electrospinning-electrospraying technology was proposed to achieve a silk fibroin-based antibacterial membrane with Janus wettability, as well as good skin affinity and breathability, which serves well as physical and bio-barriers for water resistance, PM2.5 filtration (~98.1%) and bacteria inhibition (efficiency of 95%). This shape memory Janus membrane can adapt mechanically to human body curvatures for functional wearable protections.
更多
查看译文
关键词
Fiber membrane, Shape memory, Janus wettability, Air filtration, Antibacterial, Wearable protection
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要