Activation of Beta-adrenergic Receptors Upregulates the Signal-to-Noise Ratio of Auditory Input in the Medial Prefrontal Cortex and Mediates Auditory Fear Conditioning

Molecular Neurobiology(2024)

引用 0|浏览3
暂无评分
摘要
Norepinephrine (NE) is involved in auditory fear conditioning (AFC) in posttraumatic stress disorder (PTSD). However, it is still unclear how it acts on neurons. We aimed to investigate whether the activation of the β-adrenergic receptor (β-AR) improves AFC by sensitization of the prelimbic (PL) cortex at the animal, cellular, and molecular levels. In vivo single-cell electrophysiological recording was used to characterize the changes in neurons in the PL cortex after AFC. Then, PL neurons were locally administrated by the β-AR agonist isoproterenol (ISO), the GABAaR agonist muscimol, or intervened by optogenetic method, respectively. Western blotting and immunohistochemistry were finally used to assess molecular changes. Noise and low-frequency tones induced similar AFC. The expression of β-ARs in PL cortex neurons was upregulated after fear conditioning. Microinjection of muscimol into the PL cortex blocked the conformation of AFC, whereas ISO injection facilitated AFC. Moreover, PL neurons can be distinguished into two types, with type I but not type II neurons responding to conditioned sound and being regulated by β-ARs. Our results showed that β-ARs in the PL cortex regulate conditional fear learning by activating type I PL neurons.
更多
查看译文
关键词
Acoustic fear conditioning,Single-cell patch clamp recording,β-Adrenergic receptor,Prelimbic cortex,Signal-to-noise ratio
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要