Distinct relaxation mechanism at room temperature in metallic glass

Nature communications(2023)

引用 5|浏览34
暂无评分
摘要
How glasses relax at room temperature is still a great challenge for both experimental and simulation studies due to the extremely long relaxation time-scale. Here, by employing a modified molecular dynamics simulation technique, we extend the quantitative measurement of relaxation process of metallic glasses to room temperature. Both energy relaxation and dynamics, at low temperatures, follow a stretched exponential decay with a characteristic stretching exponent β = 3/7, which is distinct from that of supercooled liquid. Such aging dynamics originates from the release of energy, an intrinsic nature of out-of-equilibrium system, and manifests itself as the elimination of defects through localized atomic strains. This finding is also supported by long-time stress-relaxation experiments of various metallic glasses, confirming its validity and universality. Here, we show that the distinct relaxation mechanism can be regarded as a direct indicator of glass transition from a dynamic perspective.
更多
查看译文
关键词
Glasses,Structure of solids and liquids,Science,Humanities and Social Sciences,multidisciplinary
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要