Bell inequalities and quantum entanglement in weak gauge bosons production at the LHC and future colliders

arXiv (Cornell University)(2023)

引用 3|浏览1
暂无评分
摘要
Quantum entanglement of weak interaction gauge bosons produced at colliders can be explored by computing the corresponding polarization density matrix. To this end, we consider the Higgs boson decays $H\to W W^*$ and $H\to Z Z^*$, in which $W^*$ and $Z^*$ are off-shell states, and the $WW$, $WZ$ and $ZZ$ di-boson production in proton collisions. The polarization density matrix of the di-boson state is determined by the amplitude of the production process and can be experimentally reconstructed from the angular distribution of the momenta of the charged leptons into which the gauge boson decays. We show that a suitable instance of the Bell inequality is violated in the Higgs boson decays to a degree that can be tested with high accuracy at the LHC already with present data. The same Bell inequality is violated in the production of $WW$ and $ZZ$ boson pairs for invariant masses above 900 GeV and scattering angles close to $\pi/2$ in the center of mass frame. In this case high luminosity LHC data are needed to detect violations of the Bell inequality with sufficient accuracy. We also analyze the prospects for detecting Bell inequality violations in di-boson final states at future $e^+e^-$ and muon colliders. A further observable that provides a lower bound on the amount of polarization entanglement in the di-boson system is computed for each of the examined processes. The analytic expressions for the polarization density matrices are presented in full in an Appendix. We also provide the unitary matrices required in the optimization procedure necessary in testing the Bell inequalities.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要