Role of electrode and proton exchange membrane configurations on microbial fuel cell performance toward bioelectricity generation integrated wastewater treatment.

Journal of environmental science and health. Part A, Toxic/hazardous substances & environmental engineering(2023)

引用 0|浏览2
暂无评分
摘要
In the present study, the effects of electrode surface area, proton exchange membrane area, and volume of the anodic chamber were investigated on the performance of five different dual chamber microbial fuel cells (MFC) using synthetic wastewater toward wastewater treatment coupled electricity generation. In the batch mode, the five different MFC's were operated with the anodic chamber volumes of 93-890 mL, 17.33-56.77 cm2 electrode surface area, obtained volumetric power densities of 137.72-58.13 mW/m3, and unit area power densities ranging from 27.04 to 11.94 mW/m2. Fed-batch studies were done with the MFC having 740 mL anodic chamber volume at different wastewater COD concentrations. The power density per unit area increased from 22.93 mW/m2 to 36.25 cm2 when the distance between electrodes was reduced from 10 to 6 cm. A maximum volumetric power density of 135.21 mW/m3 has been attained with a 6 cm electrode distance with the accomplished COD reduction of 93.21%. The presence of biofilm on the anode has been visualized through the SEM images. The higher COD concentration of wastewater and the fed-batch operation resulted in increased power output and wastewater treatment efficiency.
更多
查看译文
关键词
Microbial fuel cell,bioelectricity,electrode,exoelectrogen,proton exchange membrane,wastewater
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要