Automatic COVID-19 severity assessment from HRV

Scientific Reports(2023)

引用 0|浏览14
暂无评分
摘要
COVID-19 is known to be a cause of microvascular disease imputable to, for instance, the cytokine storm inflammatory response and the consequent blood coagulation. In this study, we propose a methodological approach for assessing the COVID-19 presence and severity based on Random Forest (RF) and Support Vector Machine (SVM) classifiers. Classifiers were applied to Heart Rate Variability (HRV) parameters extracted from photoplethysmographic (PPG) signals collected from healthy and COVID-19 affected subjects. The supervised classifiers were trained and tested on HRV parameters obtained from the PPG signals in a cohort of 50 healthy subjects and 93 COVID-19 affected subjects, divided into two groups, mild and moderate, based on the support of oxygen therapy and/or ventilation. The most informative feature set for every group’s comparison was determined with the Least Absolute Shrinkage and Selection Operator (LASSO) technique. Both RF and SVM classifiers showed a high accuracy percentage during groups’ comparisons. In particular, the RF classifier reached 94% of accuracy during the comparison between the healthy and minor severity COVID-19 group. Obtained results showed a strong capability of RF and SVM to discriminate between healthy subjects and COVID-19 patients and to differentiate the two different COVID-19 severity. The proposed method might be helpful for detecting, in a low-cost and fast fashion, the presence and severity of COVID-19 disease; moreover, these reasons make this method interesting as a starting point for future studies that aim to investigate its effectiveness as a possible screening method.
更多
查看译文
关键词
Biomedical engineering,Vascular diseases,Science,Humanities and Social Sciences,multidisciplinary
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要