SGIRR: Sparse Graph Index Remapping for ReRAM Crossbar Operation Unit and Power Optimization

ICCAD(2022)

引用 0|浏览0
暂无评分
摘要
Resistive Random Access Memory (ReRAM) Crossbars are a promising process-in-memory technology to reduce enormous data movement overheads of large-scale graph processing between computation and memory units. ReRAM cells can combine with crossbar arrays to effectively accelerate graph processing, and partitioning ReRAM crossbar arrays into Operation Units (OUs) can further improve computation accuracy of ReRAM crossbars. The operation unit utilization was not optimized in previous work, incurring extra cost. This paper proposes a two-stage algorithm with a crossbar OU-aware scheme for sparse graph index remapping for ReRAM (SGIRR) crossbars, mitigating the influence of graph sparsity. In particular, this paper is the first to consider the given operation unit size with the remapping index algorithm, optimizing the operation unit and power dissipation. Experimental results show that our proposed algorithm reduces the utilization of crossbar OUs by 31.4%, improves the total OU block usage by 10.6%, and saves energy consumption by 17.2%, on average.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要