Modeling diameter distribution of tree species in a semideciduous forest fragment

Revista Árvore(2023)

引用 0|浏览5
暂无评分
摘要
ABSTRACT Modeling diameter distribution in natural forests is an important tool for understanding the native woody species dynamics, supporting decision-making for degraded lands management and restoration. Therefore, this work aimed to fit probabilistic density functions to evaluate the diameter structure of three tree species with economic interest, such as Campomansesia xanthocarpa Marl. Ex. O. Berg, Piptadenia gonoacantha (Mart.) J.F. Macbr. and Zeyheria tuberculosa (Vell.) Bureau ex Verl., in a Semideciduous Seasonal Forest fragment at São Paulo State, Brazil. The data came from 83 temporary plots of 10 m x 20 m systematically distributed along 164 ha. Log-normal, Gamma, and Weibull functions were fitted to the three species using the fitdistrplus-package in the R program. Kolmogorov-Smirnov's adherence test was used to evaluate the fits at a 5% probability level. The functions were selected employing Akaike's Information Criterion (AIC) and Schwarz's Bayesian Information Criterion (BIC), in addition to a graphical analysis of the fitted functions. The results indicated that the three species diameter structure is positively asymmetric, representing the exponential pattern, representing continuous natural regeneration. AIC and BIC statistics indicated the Log-normal function to describe the diameter distribution of C. xanthocarpa and Z. tuberculosa, while the Gamma function was the most appropriate for P. gonoacantha. For the three species, the graphical analysis showed the Gamma function results in the best fit without tendency for estimating frequency density per diameter class.
更多
查看译文
关键词
Diameter structure,Probabilistic density functions,Adherence test
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要