Three-dimensional ordered microporous silica supported p-lanthanum ferrite and n-ceria as heterojunction photocatalyst to activate peroxymonosulfate for bisphenol a degradation

International Journal of Hydrogen Energy(2023)

引用 3|浏览6
暂无评分
摘要
In this study, three-dimensional ordered microporous silica supported p-lanthanum ferrite and n-ceria (n-CeO2@p-LaFeO3/3DOM SiO2) was successfully synthesized as a visible lightdriven photocatalyst for activating peroxymonosulfate (PMS) to degrade Bisphenol A (BPA). In a wide pH range (2-12), the BPA degradation efficiency maintained at a high level, organic matter and natural inorganic ions had no significant negative impact. When the BPA concentration was as low as 2 mg$L-1, the removal rate in 60 min still reached 95.56%, indicating that the novel photocatalyst has potential application in the treatment of trace pollutants. The pore confinement effects of catalysts and the synergistic effect between LaFeO3 and CeO2 result in the excellent photocatalytic performance. We proposed the possible mechanism of BPA degradation, specifically involving the recognition and generation mechanism of reactive oxygen species (ROSs), adsorption processes and diffusion processes. In summary, the novel n-CeO2@p-LaFeO3/3DOM SiO2 would be a promising candidate photocatalytic material for practical sewage treatment. (c) 2023 Hydrogen Energy Publications LLC. Published by Elsevier Ltd. All rights reserved.
更多
查看译文
关键词
Lanthanum ferrite,Ceria,Peroxymonosulfate,Three-dimensionally ordered macroporous materials,p-n heterojunction
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要