Impact of Glass Irradiation on Laser-Induced Breakdown Spectroscopy Data Analysis.

Sensors(2023)

引用 0|浏览11
暂无评分
摘要
Increased absorption of optical materials arising from exposure to ionizing radiation must be accounted for to accurately analyze laser-induced breakdown spectroscopy (LIBS) data retrieved from high-radiation environments. We evaluate this effect on two examples that mimic the diagnostics placed within novel nuclear reactor designs. The analysis is performed on LIBS data measured with 1% Xe gas in an ambient He environment and 1% Eu in a molten LiCl-KCl matrix, along with the measured optical absorption from the gamma- and neutron-irradiated low-OH fused silica and sapphire glasses. Significant changes in the number of laser shots required to reach a 3σ detection level are observed for the Eu data, increasing by two orders of magnitude after exposure to a 1.7 × 10 n/cm neutron fluence. For all cases examined, the spectral dependence of absorption results in the introduction of systematic errors. Moreover, if lines from different spectral regions are used to create Boltzmann plots, this attenuation leads to statistically significant changes in the temperatures calculated from the Xe II lines and Eu II lines, lowering them from 8000 ± 610 K to 6900 ± 810 K and from 15,800 ± 400 K to 7200 ± 800 K, respectively, for exposure to the 1.7 × 10 n/cm fluence. The temperature range required for a 95% confidence interval for the calculated temperature is also broadened. In the case of measuring the Xe spectrum, these effects may be mitigated using only the longer-wavelength spectral region, where radiation attenuation is relatively small, or through analysis using the iterative Saha-Boltzmann method.
更多
查看译文
关键词
advanced reactors,gamma irradiation,laser-induced breakdown spectroscopy (LIBS),neutron irradiation,optical absorption
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要