Synthesis and Antiparasitic Activity of New Trithiolato-Bridged Dinuclear Ruthenium(II)-arene-carbohydrate Conjugates.

Molecules (Basel, Switzerland)(2023)

引用 5|浏览12
暂无评分
摘要
Eight novel carbohydrate-tethered trithiolato dinuclear ruthenium(II)-arene complexes were synthesized using CuAAC ‘click’ (Cu(I)-catalyzed azide-alkyne cycloaddition) reactions, and there in vitro activity against transgenic T. gondii tachyzoites constitutively expressing β-galactosidase (T. gondii β-gal) and in non-infected human foreskin fibroblasts, HFF, was determined at 0.1 and 1 µM. When evaluated at 1 µM, seven diruthenium-carbohydrate conjugates strongly impaired parasite proliferation by >90%, while HFF viability was retained at 50% or more, and they were further subjected to the half-maximal inhibitory concentration (IC50) measurement on T. gondii β-gal. Results revealed that the biological activity of the hybrids was influenced both by the nature of the carbohydrate (glucose vs. galactose) appended on ruthenium complex and the type/length of the linker between the two units. 23 and 26, two galactose-based diruthenium conjugates, exhibited low IC50 values and reduced effect on HFF viability when applied at 2.5 µM (23: IC50 = 0.032 µM/HFF viability 92% and 26: IC50 = 0.153 µM/HFF viability 97%). Remarkably, compounds 23 and 26 performed significantly better than the corresponding carbohydrate non-modified diruthenium complexes, showing that this type of conjugates are a promising approach for obtaining new antiparasitic compounds with reduced toxicity.
更多
查看译文
关键词
CuAAC reactions,Toxoplasma gondii,antiparasitic,auxotrophy,bioorganometallic,carbohydrates,human foreskin fibroblasts,ruthenium(II)-arene complexes,toxicity
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要