Engineering charge-transfer interactions for red-emitting SrLa(Sc,Ga)O4:Ce3+ phosphor with improved thermal stability

Science China Materials(2023)

引用 1|浏览3
暂无评分
摘要
Blue-light-excitable red-emitting phosphors with high thermal stability are essential for fabricating white light-emitting diodes (WLEDs). Herein, Ce3+-doped SrLaScO4 (SLO:Ce3+) phosphor is discovered to have an abnormal red emission band centered at 640 nm when excited at 440 nm. Spectroscopy and structural analyses confirm that Ce3+ ions occupy the [LaO8] polyhedrons competitively, generating a strong crystal field splitting and a large Stokes shift to produce a red emission. To further restrict the thermal quenching of SLO:Ce3+, charge-transfer engineering is implemented by incorporating a large electronegative Ga3+ in the Sc3+ site, which can attract more charges from nearby coordinating groups to decrease the electronic occupation at the bottom of the conduction band and thereby enlarge the band gap. Sc/Ga substitution in SrLa(Sc,Ga)O4:Ce3+ enhances the thermal stability by increasing the intensity ratio from 15
更多
查看译文
关键词
charge-transfer,red-emitting
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要