The Resilience of the Phonological Network May Have Implications for Developmental and Acquired Disorders.

Brain sciences(2023)

引用 3|浏览4
暂无评分
摘要
A central tenet of network science states that the structure of the network influences processing. In this study of a phonological network of English words we asked: how does damage alter the network structure (Study 1)? How does the damaged structure influence lexical processing (Study 2)? How does the structure of the intact network "protect" processing with a less efficient algorithm (Study 3)? In Study 1, connections in the network were randomly removed to increasingly damage the network. Various measures showed the network remained well-connected (i.e., it is resilient to damage) until ~90% of the connections were removed. In Study 2, computer simulations examined the retrieval of a set of words. The performance of the model was positively correlated with naming accuracy by people with aphasia (PWA) on the Philadelphia Naming Test (PNT) across four types of aphasia. In Study 3, we demonstrated another way to model developmental or acquired disorders by manipulating how efficiently activation spread through the network. We found that the structure of the network "protects" word retrieval despite decreases in processing efficiency; words that are relatively easy to retrieve with efficient transmission of priming remain relatively easy to retrieve with less efficient transmission of priming. Cognitive network science and computer simulations may provide insight to a wide range of speech, language, hearing, and cognitive disorders.
更多
查看译文
关键词
aphasia,computer simulation,network science,phonological network,resilience
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要