Ordered Macro-Microporous Single Crystals of Covalent Organic Frameworks with Efficient Sorption of Iodine

Journal of the American Chemical Society(2023)

引用 16|浏览10
暂无评分
摘要
Fashioning microporous covalent organic frameworks (COFs) into single crystals with ordered macropores allows for an effective reduction of the mass transfer resistance and the maximum preservation of their intrinsic properties but remains unexplored. Here, we report the first synthesis of three-dimensional (3D) ordered macroporous single crystals of the imine-linked 3D microporous COFs (COF-300 and COF-303) via a template-assisted modulated strategy. In this strategy, COFs crystallized within the sacrificial colloidal crystal template, assembled from monodisperse polystyrene microspheres, and underwent an aniline-modulated amorphous-to-crystalline transformation to form large single crystals with 3D interconnected macropores. The effects of the introduced macroporous structure on the sorption performances of COF-300 single crystals were further probed by iodine. Our results indicate that iodine adsorption occurred in micropores of COF-300 but not in the introduced macropores. Accordingly, the iodine adsorption capacity of COF single crystals was governed by their micropore accessibility. The relatively long diffusion path in the non-macroporous COF-300 single crystals resulted in a limited micropore accessibility (48.4%) and thus a low capacity in iodine adsorption (1.48 g center dot g-1). The introduction of 3D ordered macropores can greatly shorten the microporous diffusion path in COF-300 single crystals and thus render all their micropores fully accessible in iodine adsorption with a capacity (3.15 g center dot g-1) that coincides well with the theoretical one.
更多
查看译文
关键词
macro–microporous single crystals,covalent organic frameworks,single crystals,iodine
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要