Protective effect of rutin on spinal motor neuron in rats exposed to acrylamide and the underlying mechanism.

Neurotoxicology(2023)

引用 0|浏览21
暂无评分
摘要
The present study aimed to investigate the protective effect of rutin on the injury of spinal motor neuron in rats exposed to acrylamide (ACR) the underlying mechanism. Fifty male Sprague-Dawley rats, aged 7-8 weeks, were randomly divided into control group, ACR group (20 mg/kg), low dose(100 mg/kg), medium dose (200 mg/kg) and high dose(400 mg/kg) rutin groups, ten rats in each group. The rats were given intragastric administration for 21 days. Every week, a neurobehavioral test was conducted. Nissl staining was used to observe the morphological changes in motor neurons in the L4-L6 segment of the spinal cord. Immunohistochemistry was used to identify AChE and ChAT in the rat spinal cord. Western blot was used to identify the expression of AChE, ChAT, P-ERK, ERK, and Nrf2 proteins in the rat spinal cord. The commercial kits were used to detect the presence of SOD, GSH, and LDH in the rat spinal cord. At the start of the second week, the medium and high dosage rutin group's rats' gait scores significantly decreased as compared to those of the ACR group. When rutin dosage was increased, the Nissl staining revealed that Nissl bodies was staining intensified compared to the ACR group. Immunohistochemistry and Western blot analysis revealed that AChE and ChAT expression changed when rutin dose was raised, but P-ERK and Nrf2 expression steadily increased in the spinal cord of rats in the medium and high dose groups compared to the ACR group. In the spinal cord of rats in each dosage group compared to the ACR group, the findings of the oxidative stress indices demonstrated that the expression levels of SOD and GSH rose with the increase of rutin dose, while the expression of LDH reduced with the rise of rutin dose. Rutin has an anti-oxidative impact through up-regulating the expression of P-ERK and Nrf2 proteins in the ERK/Nrf2 pathway, which may be connected to its protective action on motor neurons in the spinal cord of rats exposed to ACR.
更多
查看译文
关键词
Acrylamide,Antioxidant,ERK/Nrf2,Neurotoxicity,Oxidative stress,Rutin
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要