Investigation of electrical stimulation on phenotypic vascular smooth muscle cells differentiation in tissue-engineered small-diameter vascular graft

Tissue and Cell(2023)

引用 2|浏览11
暂无评分
摘要
In the development of vascular tissue engineering, particularly in the case of small diameter vessels, one of the key obstacles is the blockage of these veins once they enter the in vivo environment. One of the contributing factors to this problem is the aberrant proliferation and migration of vascular smooth muscle cells (VSMCs) from the media layer of the artery to the interior of the channel. Two distinct phenotypes have been identified for smooth muscle cells, namely synthetic and contractile. Since the synthetic phenotype plays an essential role in the unusual growth and migration, the aim of this study was to convert the synthetic phenotype into the contractile one, which is a solution to prevent the abnormal growth of VSMCs. To achieve this goal, these cells were subjected to electrical signals, using a 1000 μA sinusoidal stimulation at 10 Hz for four days, with 20 min duration per 24 h. The morphological transformations and changes in the expression of vimentin, nestin, and β-actin proteins were then studied using ICC and flow cytometry assays. Also, the expression of VSMC specific markers such as smooth muscle myosin heavy chain (SMMHC) and smooth muscle alpha-actin (α-SMA) were evaluated using RT-PCR test. In the final phase of this study, the sheep decellularized vessel was employed as a scaffold for seeding these cells. Based on the results, electrical stimulation resulted in some morphological alterations in VSMCs. Furthermore, the observed reductions in the expression levels of vimentin, nestin and β-actin proteins and increase in the expression of SMMHC and α-SMA markers showed that it is possible to convert the synthetic phenotype to the contractile one using the studied regime of electrical stimulation. Finally, it can be concluded that electrical stimulation can significantly affect the phenotype of VSMCs, as demonstrated in this study.
更多
查看译文
关键词
VSMCs,SMMHC,α-SMA,ICC,H&E,SEM
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要