Neuro-Immune Connections in Stroke: Deciphering How Stress Promotes Cerebrovascular Events.

Circulation. Cardiovascular imaging(2023)

引用 0|浏览6
暂无评分
摘要
HomeCirculation: Cardiovascular ImagingVol. 16, No. 1Neuro-Immune Connections in Stroke: Deciphering How Stress Promotes Cerebrovascular Events No AccessEditorialRequest AccessFull TextAboutView Full TextView PDFView EPUBSections ToolsAdd to favoritesDownload citationsTrack citationsPermissions ShareShare onFacebookTwitterLinked InMendeleyReddit Jump toNo AccessEditorialRequest AccessFull TextNeuro-Immune Connections in Stroke: Deciphering How Stress Promotes Cerebrovascular Events Antonia V. Seligowski, PhD and Ahmed Tawakol, MD Antonia V. SeligowskiAntonia V. Seligowski McLean Hospital, Belmont, MA (A.V.S.). Department of Psychiatry, Harvard Medical School, Boston, MA (A.V.S.). Search for more papers by this author and Ahmed TawakolAhmed Tawakol Correspondence to: Ahmed Tawakol, MD Cardiology Division Massachusetts General Hospital and Harvard Medical School, 55 Fruit St, Yaw 5-0550, Boston, MA 02114. Email E-mail Address: [email protected] https://orcid.org/0000-0002-9211-5483 Cardiology Division, Massachusetts General Hospital and Harvard Medical School, Boston, MA (A.T.). Cardiovascular Imaging Research Center, Massachusetts General Hospital and Harvard Medical School, Boston (A.T.). Search for more papers by this author Originally published17 Jan 2023https://doi.org/10.1161/CIRCIMAGING.122.015064Circulation: Cardiovascular Imaging. 2023;16This article is a commentary on the followingImpact of Metabolic Activity of Vertebra and Amygdala on Stroke Recurrence: A Prospective Cohort StudyFootnotesFor Disclosures, see page 104.The opinions expressed in this article are not necessarily those of the editors or of the American Heart Association.Correspondence to: Ahmed Tawakol, MD Cardiology Division Massachusetts General Hospital and Harvard Medical School, 55 Fruit St, Yaw 5-0550, Boston, MA 02114. Email [email protected]harvard.eduReferences1. World Health Organization. The top 10 causes of death.2020. https://www.who.int/news-room/fact-sheets/detail/the-top-10-causes-of-death.Google Scholar2. Heidt T, Sager HB, Courties G, Dutta P, Iwamoto Y, Zaltsman A, von zur Muhlen C, Bode C, Fricchione GL, Denninger J, et al. Chronic variable stress activates hematopoietic stem cells.Nat Med. 2014; 20:754–758. doi: 10.1038/nm.3589 http://www.nature.com/nm/journal/v20/n7/abs/nm.3589.html#supplementary-informationCrossrefMedlineGoogle Scholar3. Mohanta SK, Peng L, Li Y, Lu S, Sun T, Carnevale L, Perrotta M, Ma Z, Forstera B, Stanic K, et al. Neuroimmune cardiovascular interfaces control atherosclerosis.Nature. 2022; 605:152–159. doi: 10.1038/s41586-022-04673-6CrossrefMedlineGoogle Scholar4. Osborne MT, Abohashem S, Zureigat H, Abbasi TA, Tawakol A. Multimodality molecular imaging: Gaining insights into the mechanisms linking chronic stress to cardiovascular disease.J Nucl Cardiol. 2021; 28:955–966. doi: 10.1007/s12350-020-02424-6CrossrefMedlineGoogle Scholar5. Tawakol A, Ishai A, Takx RA, Figueroa AL, Ali A, Kaiser Y, Truong QA, Solomon CJ, Calcagno C, Mani V, et al. Relation between resting amygdalar activity and cardiovascular events: a longitudinal and cohort study.Lancet. 2017; 389:834–845. doi: 10.1016/S0140-6736(16)31714-7CrossrefMedlineGoogle Scholar6. Goyal A, Dey AK, Chaturvedi A, Elnabawi YA, Aberra TM, Chung JH, Belur AD, Groenendyk JW, Lerman JB, Rivers JP, et al. Chronic stress-related neural activity associates with subclinical cardiovascular disease in psoriasis: a prospective cohort study.JACC Cardiovasc Imaging. 2018 13:465. doi: 10.1016/j.jcmg.2018.08.038CrossrefMedlineGoogle Scholar7. Kang DO, Eo JS, Park EJ, Nam HS, Song JW, Park YH, Park SY, Na JO, Choi CU, Kim EJ, et al. Stress-associated neurobiological activity is linked with acute plaque instability via enhanced macrophage activity: a prospective serial 18F-FDG-PET/CT imaging assessment.Eur Heart J. 2021; 42:1883–1895. doi: 10.1093/eurheartj/ehaa1095CrossrefMedlineGoogle Scholar8. Radfar A, Abohashem S, Osborne MT, Wang Y, Dar T, Hassan MZO, Ghoneem A, Naddaf N, Patrich T, Abbasi T, et al. Stress-associated neurobiological activity associates with the risk for and timing of subsequent Takotsubo syndrome.Eur Heart J. 2021; 42:1898–1908. doi: 10.1093/eurheartj/ehab029CrossrefMedlineGoogle Scholar9. Kim J-M, Lee R, Kim Y, Jung H-B, Lee ES, Kim HR, Park K-Y, Jw S. The impact of metabolic activity of vertebra and amygdala on stroke recurrence: a prospective cohort study.Circ Cardiovasc Imaging. 2023; 16:e014544. doi: 10.1161/CIRCIMAGING.122.014544LinkGoogle Scholar10. Paulmier B, Duet M, Khayat R, Pierquet-Ghazzar N, Laissy JP, Maunoury C, Hugonnet F, Sauvaget E, Trinquart L, Faraggi M. Arterial wall uptake of fluorodeoxyglucose on PET imaging in stable cancer disease patients indicates higher risk for cardiovascular events.J Nucl Cardiol. 2008; 15:209–217. doi: 10.1016/j.nuclcard.2007.10.009CrossrefMedlineGoogle Scholar11. Rominger A, Saam T, Wolpers S, Cyran CC, Schmidt M, Foerster S, Nikolaou K, Reiser MF, Bartenstein P, Hacker M. 18F-FDG PET/CT identifies patients at risk for future vascular events in an otherwise asymptomatic cohort with neoplastic disease.J Nucl Med. 2009; 50:1611–1620. doi: 10.2967/jnumed.109.065151CrossrefMedlineGoogle Scholar12. Figueroa AL, Abdelbaky A, Truong QA, Corsini E, Macnabb MH, Lavender ZR, Lawler MA, Grinspoon SK, Brady TJ, Nasir K, et al. Measurement of arterial activity on routine FDG PET/CT images improves prediction of risk of future CV events.JACC Cardiovasc Imaging. 2013; 6:1250–1259. doi: 10.1016/j.jcmg.2013.08.006CrossrefMedlineGoogle Scholar13. Marnane M, Merwick A, Sheehan OC, Hannon N, Foran P, Grant T, Dolan E, Moroney J, Murphy S, O’Rourke K, et al. Carotid plaque inflammation on 18F-fluorodeoxyglucose positron emission tomography predicts early stroke recurrence.Ann Neurol. 2012; 71:709–718. doi: 10.1002/ana.23553CrossrefMedlineGoogle Scholar14. Carney RM, Freedland KE, Stein PK, Skala JA, Hoffman P, Jaffe AS. Change in heart rate and heart rate variability during treatment for depression in patients with coronary heart disease.Psychosom Med. 2000; 62:639–647. doi: 10.1097/00006842-200009000-00007CrossrefMedlineGoogle Scholar15. Blumenthal JA, Sherwood A, Smith PJ, Watkins L, Mabe S, Kraus WE, Ingle K, Miller P, Hinderliter A. Enhancing cardiac rehabilitation with stress management training: a randomized, clinical efficacy trial.Circulation. 2016; 133:1341–1350. doi: 10.1161/circulationaha.115.018926LinkGoogle Scholar16. Vaccarino V, Almuwaqqat Z, Kim JH, Hammadah M, Shah AJ, Ko YA, Elon L, Sullivan S, Shah A, Alkhoder A, et al. Association of mental stress-induced myocardial ischemia with cardiovascular events in patients with coronary heart disease.JAMA. 2021; 326:1818–1828. doi: 10.1001/jama.2021.17649CrossrefMedlineGoogle Scholar17. Devesa A, Lobo-Gonzalez M, Martinez-Milla J, Oliva B, Garcia-Lunar I, Mastrangelo A, Espana S, Sanz J, Mendiguren JM, Bueno H, et al. Bone marrow activation in response to metabolic syndrome and early atherosclerosis.Eur Heart J. 2022; 43:1809–1828. doi: 10.1093/eurheartj/ehac102CrossrefMedlineGoogle Scholar18. Emami H, Singh P, MacNabb M, Vucic E, Lavender Z, Rudd JH, Fayad ZA, Lehrer-Graiwer J, Korsgren M, Figueroa AL, et al. Splenic metabolic activity predicts risk of future cardiovascular events: demonstration of a cardiosplenic axis in humans.JACC Cardiovasc Imaging. 2015; 8:121–130. doi: 10.1016/j.jcmg.2014.10.009CrossrefMedlineGoogle Scholar19. Abohashem S, Osborne MT, Dar T, Naddaf N, Abbasi T, Ghoneem A, Radfar A, Patrich T, Oberfeld B, Tung B, et al. A leucopoietic-arterial axis underlying the link between ambient air pollution and cardiovascular disease in humans.Eur Heart J. 2021; 42:761–772. doi: 10.1093/eurheartj/ehaa982CrossrefMedlineGoogle Scholar20. Kim EJ, Kim S, Kang DO, Seo HS. Metabolic activity of the spleen and bone marrow in patients with acute myocardial infarction evaluated by 18f-fluorodeoxyglucose positron emission tomograpic imaging.Circ Cardiovasc Imaging. 2014; 7:454–460. doi: 10.1161/CIRCIMAGING.113.001093LinkGoogle Scholar21. Libby P, Nahrendorf M, Swirski FK. Mischief in the marrow: a root of cardiovascular evil.Eur Heart J. 2022; 43:1829–1831. doi: 10.1093/eurheartj/ehac149CrossrefMedlineGoogle Scholar Previous Back to top Next FiguresReferencesRelatedDetailsRelated articlesImpact of Metabolic Activity of Vertebra and Amygdala on Stroke Recurrence: A Prospective Cohort StudyJeong-Min Kim, et al. Circulation: Cardiovascular Imaging. 2023;16 January 2023Vol 16, Issue 1 Advertisement Article InformationMetrics © 2023 American Heart Association, Inc.https://doi.org/10.1161/CIRCIMAGING.122.015064PMID: 36649451 Originally publishedJanuary 17, 2023 KeywordsstrokeamygdalaimagingEditorialsstresscardiovascular diseasePDF download Advertisement
更多
查看译文
关键词
Editorials,amygdala,cardiovascular disease,imaging,stress,stroke
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要