Cardiac Reprogramming: Toward a Total Eclipse of the Failing Heart.

Circulation(2023)

引用 1|浏览3
暂无评分
摘要
HomeCirculationVol. 147, No. 3Cardiac Reprogramming: Toward a Total Eclipse of the Failing Heart No AccessEditorialRequest AccessFull TextAboutView Full TextView PDFView EPUBSections ToolsAdd to favoritesDownload citationsTrack citationsPermissions ShareShare onFacebookTwitterLinked InMendeleyReddit Jump toNo AccessEditorialRequest AccessFull TextCardiac Reprogramming: Toward a Total Eclipse of the Failing Heart Glynnis A. Garry and Eric N. Olson Glynnis A. GarryGlynnis A. Garry https://orcid.org/0000-0002-3777-0151 Department of Molecular Biology, Hamon Center for Regenerative Science and Medicine, and Senator Paul D. Wellstone Muscular Dystrophy Cooperative Research Center, University of Texas Southwestern Medical Center, Dallas. Search for more papers by this author and Eric N. OlsonEric N. Olson Correspondence to: Eric N. Olson, PhD, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX 75390. Email E-mail Address: [email protected] https://orcid.org/0000-0003-1151-8262 Department of Molecular Biology, Hamon Center for Regenerative Science and Medicine, and Senator Paul D. Wellstone Muscular Dystrophy Cooperative Research Center, University of Texas Southwestern Medical Center, Dallas. Search for more papers by this author Originally published17 Jan 2023https://doi.org/10.1161/CIRCULATIONAHA.122.062691Circulation. 2023;147:239–241This article is a commentary on the followingDirect Reprogramming Improves Cardiac Function and Reverses Fibrosis in Chronic Myocardial InfarctionFootnotesThe opinions expressed in this article are not necessarily those of the editors or of the American Heart Association.Circulation is available at www.ahajournals.org/journal/circFor Sources of Funding and Disclosures, see page 241.Correspondence to: Eric N. Olson, PhD, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX 75390. Email eric.[email protected]eduReferences1. Virani SS, Alonso A, Aparaicio HJ, Benjamin EJ, Bittencourt MS, Callaway CW, Carson A, Chamberlain AM, Cheng S, Delling FN, et al. Heart disease and stroke statistics–2021 update: a report from the American Heart Association.Circulation. 2021; 143:e254–e743. doi: 10.1161/CIR.0000000000000950LinkGoogle Scholar2. Dharmavaram N, Hess T, Jaeger H, Smith J, Hermsen J, Murray D, Dhingra R. National trends in heart donor usage rates: are we efficiently transplanting more hearts?J Am Heart Assoc. 2021; 10:e019655. doi: 10.1161/JAHA.120.019655LinkGoogle Scholar3. Tani H, Sadahiro T, Yamada Y, Isomi M, Yamakawa H, Fujita R, Abe Y, Akiyama T, Nakano K, Kuze Y, et al. Direct reprogramming improves cardiac function and reverses fibrosis in chronic myocardial infarction.Circulation. 2023; 147:223–238.doi: 10.1161/CIRCULATIONAHA.121.058655LinkGoogle Scholar4. Garry GA, Bassel-Duby R, Olson EN. Direct reprogramming as a route to cardiac repair.Semin Cell Dev Biol. 2022; 122:3–13. doi: 10.1016/j.semcdb.2021.05.019CrossrefMedlineGoogle Scholar5. Hashimoto H, Zhaoning W, Garry GA, Malladi VS, Botten GA, Ye W, Zhou H, Osterwalder M, Dickel DE, Visel A, et al. Cardiac reprogramming factors synergistically activate genome-wide cardiogenic stage-specific enhancers.Cell Stem Cell. 2019; 25:69–86.e5. doi: 10.1016/j.stem.2019.03.022CrossrefMedlineGoogle Scholar6. Ieda M, Fu J, Delgado-Olguin P, Vedantham V, Hayashi Y, Bruneau BG, Srivastava D. Direct reprogramming of fibroblasts into functional cardiomyocytes by defined factors.Cell. 2010; 142:375–386. doi: 10.1016/j.cell.2010.07.002CrossrefMedlineGoogle Scholar7. Song K, Nam Y, Luo X, Qi X, Tan W, Huang GN, Acharya A, Smith CL, Tallquist MD, Neilson EG, et al. Heart repair by reprogramming non-myocytes with cardiac transcription factors.Nature. 2012; 485:599–604. doi: 10.1038/nature11139CrossrefMedlineGoogle Scholar8. Nam YJ, Song K, Luo X, Daniel E, Lambth K, West K, Hill JA, DiMaio JM, Baker LA, Bassel-Duby R, et al. Reprogramming of human fibroblasts toward a cardiac fate.Proc Natl Acad Sci U S A. 2013; 110:5588–5593. doi: 10.1073/pnas.1301019110CrossrefMedlineGoogle Scholar9. Kaur K, Hadas Y, Kurian AA, Zak MM, Yoo J, Mahmood A, Girard H, Komargodski R, Io T, Santini MP, et al. Direct reprogramming induces vascular regeneration post muscle ischemic injury.Mol Ther. 2021; 29:3042–3058. doi: 10.1016/j.ymthe.2021.07.014CrossrefMedlineGoogle Scholar10. Muraoka N, Yamakawa H, Miyamoto K, Sadahiro T, Umei T, Isomi M, Nakashima H, Akiyama M, Wada R, Inagawa K, et al. MiR-133 promotes cardiac reprogramming by directly repressing Snai1 and silencing fibroblast signatures.EMBO J. 2014; 33:1565–1581. doi: 10.15252/embj.201387605CrossrefMedlineGoogle Scholar11. Garry GA, Bezprozvannaya S, Chen K, Zhou H, Hashimoto H, Moralas MG, Liu N, Bassel-Duby R, Olson EN. The histone reader PHF7 cooperates with the SWI/SNF complex at cardiac super enhancers to promote direct reprogramming.Nat Cell Biol. 2021; 23:467–475. doi: 10.1038/s41556-021-00668-zCrossrefMedlineGoogle Scholar12. Wang H, Keepers B, Qian Y, Xie Y, Colon M, Liu J, Qian L. Cross-lineage potential of Ascl1 uncovered by comparing diverse reprogramming regulatomes.Cell Stem Cell. 2022; 29:1491–1504.e9. doi: 10.1016/j.stem.2022.09.006CrossrefMedlineGoogle Scholar Previous Back to top Next FiguresReferencesRelatedDetailsRelated articlesDirect Reprogramming Improves Cardiac Function and Reverses Fibrosis in Chronic Myocardial InfarctionHidenori Tani, et al. Circulation. 2023;147:223-238 January 17, 2023Vol 147, Issue 3 Advertisement Article InformationMetrics © 2023 American Heart Association, Inc.https://doi.org/10.1161/CIRCULATIONAHA.122.062691PMID: 36649395 Originally publishedJanuary 17, 2023 Keywordsregenerationcellular reprogrammingEditorialsheart failurePDF download Advertisement SubjectsCellular ReprogrammingMyocardial Regeneration
更多
查看译文
关键词
Editorials,cellular reprogramming,heart failure,regeneration
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要