3D-printed sensor decorated with nanomaterials by CO2 laser ablation and electrochemical treatment for non-enzymatic tyrosine detection

Microchimica Acta(2023)

引用 5|浏览2
暂无评分
摘要
The combination of CO2 laser ablation and electrochemical surface treatments is demonstrated to improve the electrochemical performance of carbon black/polylactic acid (CB/PLA) 3D-printed electrodes through the growth of flower-like Na2O nanostructures on their surface. Scanning electron microscopy images revealed that the combination of treatments ablated the electrode’s polymeric layer, exposing a porous surface where Na2O flower-like nanostructures were formed. The electrochemical performance of the fabricated electrodes was measured by the reversibility of the ferri/ferrocyanide redox couple presenting a significantly improved performance compared with electrodes treated by only one of the steps. Electrodes treated by the combined method also showed a better electrochemical response for tyrosine oxidation. These electrodes were used as a non-enzymatic tyrosine sensor for quantification in human urine samples. Two fortified urine samples were analyzed, and the recovery values were 106 and 109
更多
查看译文
关键词
co2 laser ablation,nanomaterials,sensor,electrochemical treatment,d-printed,non-enzymatic
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要