Residual Strains in an Additively Processed Ni-based Superalloy Transpiration-Cooled Aerodynamic Leading Edge Structure using Neutron Diffraction

AIAA SCITECH 2023 Forum(2023)

引用 0|浏览0
暂无评分
摘要
Selective Laser Melting (SLM) is a well-known additive manufacturing method based on a layer-by-layer building process that is capable of fabricating gas turbine Ni-based superalloy parts with complex and integrated cooling geometries that are typically not achievable using conventional casting methods. However, the impact of residual stress concentration on SLM component life is a concern. In this work, residual strains present at room temperature in an SLM Inconel 718 generic aerodynamic leading edge segment with transpiration cooling were investigated using neutron diffraction at Oak Ridge National Laboratory. This study reveals that areas of the part where complex cooling holes were printed exhibit residual tensile strains that can be detrimental to its integrity. The study paves the way for future studies of the design of cooling hole geometries and manufacturing parameters that achieve improved cooling while minimizing stress concentration effects.
更多
查看译文
关键词
neutron,ni-based,transpiration-cooled
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要