Degradation of alkane hydrocarbons by Priestia megaterium ZS16 and sediments consortia with special reference to toxicity and oxidative stress induced by the sediments in the vicinity of an oil refinery.

Chemosphere(2023)

引用 1|浏览1
暂无评分
摘要
Petroleum hydrocarbon is a critical ecological issue with impact on ecosystems through bioaccumulation. It poses significant risks to human health. Due to the extent of alkane hydrocarbon pollution in some environments, biosurfactants are considered as a new multifunctional technology for the efficient removal of petroleum-based contaminants. To this end, Yamuna river sediments were collected at different sites in the vicinity of Mathura oil refinery, UP (India). They were analysed by atomic absorption spectrophotometry and gas chromatography-mass spectrometry (GC-MS) for heavy metals and organic pollutants. Heptadecane, nonadecane, oleic acid ester and phthalic acid were detected. Total 107 bacteria were isolated from the sediments and screened for biosurfactant production. The most efficient biosurfactant producing strain was tested for its capability to degrade hexadecane efficiently at different time intervals (0 h, 7 d, 14 d and 21 d). FT-IR analysis defined the biosurfactant as lipopeptide. 16S rRNA gene sequencing identified the bacterium as Priestia megaterium. The strain lacks resistance to common antibiotics thus making it an important candidate for remediation. The microbial consortia present in the sediments were also investigated for their capability to degrade C, C and C alkane hydrocarbons. By using gas chromatography-mass spectrophotometry the metabolites were identified as 1-docosanol, dodecanoic acid, 7-hexadecenal, (Z)-, hexadecanoic acid, docosanoic acid, 1-hexacosanal, 9-octadecenoic acid, 3-octanone, Z,Z-6,28-heptatriactontadien-2-one, heptacosyl pentafluoropropionate, 1,30-triacontanediol and decyl octadecyl ester. Oxidative stress in Vigna radiata L. roots was observed by using Confocal Laser Scanning Microscopy. A strong reduction in seed germination and radicle and plumule length was observed when Vigna radiata L. was treated with different concentrations of sediment extracts, possibly due to the toxic effects of the pollutants in the river sediments. Thus, this study is significant since it considers the toxicological effects of hydrocarbons and to degrade them in an environmentally friendly manner.
更多
查看译文
关键词
Alkane hydrocarbons,Biodegradation,Biosurfactant,River sediments,Seed germination assay
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要