Air–water properties of unsteady breaking bore part 2: Void fraction and bubble statistics

International Journal of Multiphase Flow(2023)

引用 0|浏览5
暂无评分
摘要
Continuing from the part 1 (Shi et al., 2022) this paper presents an experimental investigation of transient void fraction and bubble statistics in a highly turbulent breaking bore with Fr1=2.4. The measurements were conducted using a combination of dual-tip phase-detection probes and an ultra-high-speed video camera. The enclosed bubble detection technique (EBDT) used the synchronised probe and camera signals to provide the contour of instantaneous void fraction in the bore roller. The ensemble-averaged void fraction was derived, and compared to analytical solutions of air diffusion models. The bubble statistics were characterised by the bubble clustering properties, pseudo bubble count rate and bubble size spectrum. The clustering data showed the non-random bubble grouping in the shear layer, and the bubble size distributions N(r) followed a commonly adopted bubble break-up model: N(r)∝r−m, where r was the equivalent bubble radius in the present study. The comparison indicated that, in the breaking bore, its air diffusion process was similar to that in a stationary hydraulic jump, and the bubble break-up process was comparable to that in breaking waves.
更多
查看译文
关键词
Unsteady gas–liquid flow,Breaking bore,Dual-tip phase detection probe,Image processing,Void fraction,Bubble clustering,Bubble size spectrum
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要