Stimulation-induced entrainment of hippocampal network activity: Identifying optimal input frequencies

Hippocampus(2023)

引用 1|浏览1
暂无评分
摘要
The hippocampus contains rich oscillatory activity, with continuous ebbs and flows of rhythmic currents that constrain its ability to integrate inputs. During associative learning, the hippocampus must integrate inputs from a range of sources carrying information about events and the contexts in which they occur. Under these circumstances, temporal coordination of activity between sender and receiver is likely essential for successful communication. Previously, it has been shown that the coordination of rhythmic activity between the lateral entorhinal cortex (LEC) and the CA1 region of the hippocampus is tightly correlated with the onset of learning in an associative learning task. We aimed to examine whether rhythmic inputs from the LEC in specific frequency ranges were sufficient to enhance the temporal coordination of activity in downstream CA1. In urethane-anesthetized rats, we applied extracellular low-intensity alternating current stimulation across the length of the LEC. Using this method, we aimed to phase-bias ongoing neuronal activity in LEC at a range of different frequencies (from 1.25 to 55 Hz). Rhythmic stimulation of LEC at both 35 and 50 Hz increased the proportion of CA1 neurons significantly entrained to the phase of the applied stimulation current. A subset of stimulation frequencies modified CA1 spiking relationships to the phase of local ongoing CA1 oscillations, with each stimulation frequency exerting a unique influence upon downstream CA1, often in frequency ranges outside the target stimulation frequency. These results suggest there are optimal frequencies for LEC-CA1 communication, and that different profiles of LEC rhythms likely have distinct outcomes upon CA1 processing.
更多
查看译文
关键词
CA1,lateral entorhinal cortex,local field potential,neural oscillations
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要