Local Fitness Landscape Exploration Based Genetic Algorithms.

IEEE Access(2023)

引用 2|浏览0
暂无评分
摘要
Genetic algorithms (GAs) have been used to evolve optimal/sub-optimal solutions of many problems. When using GAs for evolving solutions, often fitness evaluation is the most computationally expensive, and this discourages researchers from applying GAs for computationally challenging problems. This paper presents an approach for generating offspring based on a local fitness landscape exploration to increase the speed of the search for optimal/sub-optimal solutions and to evolve better fitness solutions. The proposed algorithm, "Fitness Landscape Exploration based Genetic Algorithm " (FLEX-GA) can be applied to single and multi-objective optimization problems. Experiments were conducted on several single and multi-objective benchmark problems with and without constraints. The performance of the FLEX-based algorithm on single-objective problems is compared with a canonical GA and other algorithms. For multi-objective benchmark problems, the comparison is made with NSGA-II, and other multi-objective optimization algorithms. Lastly, Pareto solutions are evolved on eight real-world multi-objective optimization problems, and a comparative performance is presented with NSGA-II. Experimental results show that using FLEX on most of the single and multi-objective problems, the speed of the search improves up to 50% and the quality of solutions also improves. These results provide sufficient evidence of the applicability of fitness landscape approximation-based algorithms for solving real-world optimization problems.
更多
查看译文
关键词
Genetic algorithms,Search problems,Approximation algorithms,Optimization,Flexible printed circuits,Genomics,Bioinformatics,fitness landscape approximation,multi-objective optimization,evolutionary search
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要