Hepatotoxicity screening and ranking of structurally different pyrrolizidine alkaloids in zebrafish

FOOD AND CHEMICAL TOXICOLOGY(2023)

引用 0|浏览10
暂无评分
摘要
Pyrrolizidine alkaloids (PAs) are phytotoxins distributed in similar to 6000 plant species. PA-contaminated/containing foodstuffs/herbs/supplements pose a potential threat to human health. Various regulatory authorities established different PA margins of exposure assuming an equal hepatotoxic potency of structurally diverse PAs, although they exhibit different toxic potencies. Therefore, understanding hepatotoxic potencies of different PAs would facilitate a more appropriate risk assessment of PA exposure. In this study, a zebrafish model, which mimics physiological processes of absorption, distribution, metabolism, and excretion, was selected to evaluate acute hepatotoxic potency of different PAs (7 PAs and 2 PA N-oxides) and explore possible physiological pathways involved in PA-induced hepatotoxicity. After 6 h oral administration, PAs caused distinct structure-dependent hepatotoxicity with a series of biochemical and histological changes in zebrafish. Based on the measured toxicological endpoints, the relative toxic potency order of different PAs was derived as lasiocarpine similar to retrorsine > monocrotaline > riddelliine > clivorine > heliotrine > retrorsine N-oxide similar to riddelliine N-oxide >> > platyphyline. Further, compared to control group, different upregulation/downregulation of mRNA expression in PA-treated groups indicated that inflammation, apoptosis, and steatosis were involved in PA-induced hepatotoxicity in zebrafish. These findings demonstrate that zebrafish model is useful for screening and ranking hepatotoxicity of PAs with diverse structures, which would facilitate the more accurate risk assessment of PA exposure.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要