MCFSA-Net: A multi-scale channel fusion and spatial activation network for retinal vessel segmentation

JOURNAL OF BIOPHOTONICS(2022)

引用 1|浏览22
暂无评分
摘要
As the only vascular tissue that can be directly viewed in vivo, retinal vessels are medically important in assisting the diagnosis of ocular and cardiovascular diseases. They generally appear as different morphologies and uneven thickness in fundus images. Therefore, the single-scale segmentation method may fail to capture abundant morphological features, suffering from the deterioration in vessel segmentation, especially for tiny vessels. To alleviate this issue, we propose a multi-scale channel fusion and spatial activation network (MCFSA-Net) for retinal vessel segmentation with emphasis on tiny ones. Specifically, the Hybrid Convolution-DropBlock (HC-Drop) is first used to extract deep features of vessels and construct multi-scale feature maps by progressive down-sampling. Then, the Channel Cooperative Attention Fusion (CCAF) module is designed to handle different morphological vessels in a multi-scale manner. Finally, the Global Spatial Activation (GSA) module is introduced to aggregate global feature information for improving the attention on tiny vessels in the spatial domain and realizing effective segmentation for them. Experiments are carried out on three datasets including DRIVE, CHASE_DB1, and STARE. Our retinal vessel segmentation method achieves Accuracy of 96.95%, 97.57%, and 97.83%, and F1 score of 82.67%, 81.82%, and 82.95% in the above datasets, respectively. Qualitative and quantitative analysis show that the proposed method outperforms current advanced vessel segmentation methods, especially for tiny vessels.
更多
查看译文
关键词
attention mechanism, multi-scale feature fusion, retinal vessel segmentation, spatial activation
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要