Millimeter-range Induced Flexo-Pyrophotronic Effect in Centrosymmetric Heterojunction for Ultrafast Night-Photomonitoring

ADVANCED FUNCTIONAL MATERIALS(2023)

引用 2|浏览0
暂无评分
摘要
Unlike the structure-specific piezoelectric effect, flexoelectricity is a universal phenomenon that can offer a wide range of energy-efficient, cost-effective, mechano-opto-electro-coupled applications. Even though the flexoelectric effect has been extensively studied at nanoscale, a fundamental, yet unresolved, the issue is how it can be exploited at larger scales for potential applications. Herein, the long-range (>millimeter) stimulated and regulated impact of the localized inhomogeneous strain-induced flexoelectric potential on centrosymmetric metal/titanium oxide heterojunction with nanoscale precision (approximate to 5.8 nm) is demonstrated. The noticed phenomenon is attributed to the long-range interaction between flexoelectric and build-in potentials, which is further utilized to develop mechanically regulated (enhancement > 10(4)%), self-powered (i.e., 0 V), ultrafast (>10 million bits per second), and broadband (lambda = 365-1720 nm) pyro-photosensors having high responsivity (approximate to 1.18 mA W-1). As prospective applications, proof-of-concept ultrafast night movement monitors (>720 km h(-1)), high-performing stationery, and dynamic obstacle sensors with possible impact alerts are developed. These findings lay the groundwork for the micro-to-millimeter-range flexo-opto-electrical coupling in centrosymmetric materials, which can have a wide variety of practical applications.
更多
查看译文
关键词
flexoelectric effects, long-range interaction, night-photomonitoring, photodetectors, ultrafast night movement monitoring
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要