Biological effects on the migration and transformation of microplastics in the marine environment.

Marine environmental research(2023)

引用 10|浏览16
暂无评分
摘要
Microplastics(MPs) are ubiquitous, difficult to degrade, and potentially threatening to organisms in marine environment, so it is important to clarify the factors that affect their biogeochemical processes. The impact of biological activities on the MPs in marine environment is ubiquitous and complex, and there is currently a lack of systematic summaries. This paper reviews the effects of biological actions on the migration, distribution and degradation of MPs in marine environment from four aspects: biological ingestion and digestion, biological movement, biological colonization and biological adhesion. MPs in seawater and sediments can be closely combined with organisms through three pathways: biological ingestion, biofilm formation or adhesion to organisms, and are passed between species at different trophic levels through the food chain. The generation and degradation of faecal pellets and biofilms can alter the density of "environmental MPs", thereby affecting their vertical migration and deposition in water bodies. The movement of swimming organisms and the disturbance by benthic organisms can promote the migration of MPs in water and vertical migration and resuspension in sediments, thereby changing the distribution of MPs in local sea areas. The grinding effect of the digestive tract and the secretion of chemicals from the biofilm (such as enzymes and acids) can reduce the particle size and increase surface roughness of MPs, or even degrade them completely. Besides, biological adhesion may be an important mechanism affecting the distribution, migration and preservation of MPs. There may be complex interactions and linkages among marine dynamical processes, photochemical degradation and biological processes that collectively affect the biogeochemical processes of MPs, but their relative contributions remain to be more studied.
更多
查看译文
关键词
Biological effects,Degradation,Distribution,Microplastics,Transportation
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要