Construction of Dual-Shell Mo2C/C Microsphere towards Efficient Electromagnetic Wave Absorption

International Journal of Molecular Sciences(2022)

引用 0|浏览0
暂无评分
摘要
Carbon-based carbides have attracted tremendous attention for electromagnetic energy attenuation due to their adjustable dielectric properties, oxidation resistance, and good chemical stability. Herein, we reasonably regulate the growth of dopamine hydrochloride on the surface of the Mo-glycerate (Mo-GL) microsphere and then transform the resultant Mo-polydopamine (Mo-PD) microsphere into a dual-shell Mo2C/C (DS-Mo2C/C) microsphere in a high-temperature pyrolysis process under an inert atmosphere. It is found that the pyrolysis temperature plays an important role in the graphitization degree of the carbon matrix and internal architecture. The fabrication of a dual-shell structure can be propitious to the optimization of impedance matching, and the introduction of Mo2C nanoparticles also prompts the accumulation of polarization loss. When the pyrolysis temperature reaches 800 °C, the optimized composite of DS-Mo2C/C-800 exhibits good EM absorption performance in the frequency range of 2.0–18.0 GHz. DS-Mo2C/C-800′s qualified bandwidth can reach 4.4 GHz at a matching thickness of 1.5 mm, and the integrated qualified bandwidth (QBW) even exceeds 14.5 GHz with a thickness range of 1.5–5.0 mm. The positive effects of the dual-shell structure and Mo2C nanoparticles on EM energy attenuation may render the DS-Mo2C/C microsphere as a promising candidate for lightweight and broad bandwidth EM absorption materials in the future.
更多
查看译文
关键词
Mo<sub>2</sub>C/C composites,dielectric loss,microwave absorption,dual-shell structure,polarization loss
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要