Rapid Production of Mn3O4/rGO as an Efficient Electrode Material for Supercapacitor by Flame Plasma

Materials(2018)

引用 0|浏览0
暂无评分
摘要
Benefiting from good ion accessibility and high electrical conductivity, graphene-based material as electrodes show promising electrochemical performance in energy storage systems. In this study, a novel strategy is devised to prepare binder-free Mn3O4-reduced graphene oxide (Mn3O4/rGO) electrodes. Well-dispersed and homogeneous Mn3O4 nanosheets are grown on graphene layers through a facile chemical co-precipitation process and subsequent flame procedure. This obtained Mn3O4/rGO nanostructures exhibit excellent gravimetric specific capacitance of 342.5 F g−1 at current density of 1 A g−1 and remarkable cycling stability of 85.47% capacitance retention under 10,000 extreme charge/discharge cycles at large current density. Furthermore, an asymmetric supercapacitor assembled using Mn3O4/rGO and activated graphene (AG) delivers a high energy density of 27.41 Wh kg−1 and a maximum power density of 8 kW kg−1. The material synthesis strategy presented in this study is facile, rapid and simple, which would give an insight into potential strategies for large-scale applications of metal oxide/graphene and hold tremendous promise for power storage applications.
更多
查看译文
关键词
Mn3O4,reduced graphene oxide,supercapacitors,flame plasma
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要